Blood Flow Restriction (BFR)

Overview and Application in Outpatient Rehab and Performance

By: Ray Yumang, PT
Dear God,

Thanks for making me funny. Especially since you didn't give me much else to work with.

hartungproductionsPretty much how I start off all of my prayers. Kind of awkward when praying outbound at church & over dinner but oh well. Lol
About Me

- From the Philippines
- PT for 28 years
- Fayetteville and Springdale
- Variety of patients
 - Elderly, adult, young adults, younger kids (8-16)
Objectives (What you should get out of this presentation)

- Have an idea what BFR is about
- Know the use in rehab setting
- Know the use in performance setting
- Know who would benefit from it
Perspective
Physiology:

Metabolite Theory

- Forced anaerobic metabolism (Cori cycle)

The Cori Cycle

The forced use of anaerobic metabolism (the Cori Cycle) has metabolite byproducts of lactate and hydrogen. Type III and IV alveolar in the muscle increase this increase acidity and take a signal to the pituitary to stimulate growth hormone production. Growth hormone then stimulates the liver to release IGF (Insulin-like Growth Factor 1).
Studies:

STRENGTH AND HYPERTROPHY

- ACSM guidelines
- BFR training has consistently demonstrated strength and hypertrophy gains vs controls and comparable gains to heavy load lifting.
 - Comparing high intensity training (80% 1 RM) to low intensity with BFR (30% 1 RM) and low intensity without BFR (30% 1 RM) demonstrated similar increases in strength between HIT and BFR and both were significantly higher than the low intensity group. (Takarada 2009)
Johnny Owens, MPT

Worked in the Military

Interested in research and science

Sports medicine and total joint arthroplasties
History of BFR

- Wounded Warrior
- Limb Salvage
- 2012 Used in Clinical Settings
History of BFR

- Currently performing studies effectiveness in the clinical setting for Knee Arthroscopy, ACL repair, Fractures of the Wrist and Femur, Achilles Repairs and Shoulder Pathologies

- "This is a modality with a very large amount of scientific literature to support it and its potential in the clinical setting is tremendous" - Johnny Owens, MPT
What is it??
Physiology

- Lactic Acid
- Growth Hormones
- IGF-1
- Myostatin
Physiology

- Mechanical Tension Model

- “To obtain substantial hypertrophy from a resistance training program, the target muscles must be subjected to substantial increased load.” (Meyer 2006)
Physiology

- Mechanical Tension Model

Therefore American College of Sports Medicine (ACSM) recommended that during resistance training, the load should exceed 70% of the one repetition maximum to achieve maximum hypertrophy.
Physiology

- Mechanical Tension Model
- Muscle damage from subsequent powerful muscle contraction
Physiology

- Metabolite Theory
- BFR Uses this model
Study that compared a low intensity exercise with BFR, only the group using a tourniquet demonstrated a significant increase in muscle cross sectional area and strength (Takarada 2004)
Physiology

- Low Intensity (30% 1 RM) uses the Kreb's cycle (Aerobic Cycle)
- Slow Twitch fibers
- Aerobic Fibers
Physiology

- Metabolite Theory
 - Cori Cycle
 - Limits the oxygen supply to the muscle which switches from aerobic to anaerobic metabolism
 - Lactic Acid is the byproduct
 - Triggers the Pituitary gland to release Growth Hormones and IGF-1
Lactic Acid

- The more hypoxic the muscle becomes, the more need for anaerobic metabolism.
- When a tourniquet occlusive pressure is increased, lactate concentration also increases (Takarada 2000)
Lactic Acid

Multiple studies that have measured blood lactate after BFR have demonstrated subsequent rise in lactate. For instance, when comparing a load of 20% 1 RM low load exercise with and without a tourniquet group demonstrated a significant rise in lactate. (Takarada 2000)
Growth Hormones

As Lactate builds up in the muscle, group III-IV afferents stimulate the pituitary gland to release Growth Hormones (Gosselink 1998)
Growth Hormones

- Collagen Synthesis
- Healing and Recovery
- Healing environment with soft tissue, joints, tendon, muscle and bone.
- Doesn’t get you bigger, but helps with tissue breakdown and damage.
Growth Hormones played a direct role in increased collagen synthesis after exercise (Doessing 2010)
Growth Hormones

- The findings with BFR compared to HIT training was 1.7x higher with Growth Hormones (Takarada 2000, Kraemer 1990)
IGF-1

- Insulin like Growth Factors
- Protein linked to muscle growth
- Responsible for hypertrophy
- Links with Satellite cells and muscle fibers and muscle growth occurs
IGF-1

BFR Studies show significant increased in IGF-1 vs. control group (Abe 2005, Taken 2005, Fujita 2007)
The anabolic effects of IGF-1 appear to be increased with mechanical loading and increases in IGF-1 have been correlated with subsequent strength gains (Hammed 2004, Kostek 2005)
Myostatin

After 9 weeks of Heavy Lifting (up to 85% of 1 RM) there was a down regulating of myostatin and hypertrophy and strength occurred (Roth 2003)
Myostatin

- Blocks myogenesis or muscle growth
- The switch that allows proliferation of myogenic stem cells to proliferate and allow muscle hypertrophy
Belgian Blue
Deficient in Myostatin
Belgian Blue
Deficient in Nutrients
Myostatin

- Inhibiting myostatin after injury reduces the fibrosis seen in the muscles (Wagner 2005)
Myostatin

- Myostatin belongs to the TGF-Beta Superfamily
- These are released upon damage to the cell
- BFR helps reduce the production of myostatin if used immediately post injury
Is it Safe?
Ultrasound (22 Risk Factors)
- DVT or Thrombosis
- Hemorrhagic conditions
- Pregnancy
- Eyes, anterior neck, carotid sinus, head, reproductive organs
- Impaired Cognition or communication
- Regenerating Nerves
- Damaged or at risk skin (local)
- Infection
- Tuberculosis
- Malignancy (local)
- Recently irradiated tissue (local)
- Electronic Device
- Impaired sensation (local)
- Active epiphysis
- Skin disease
- Impaired Circulation
- Chest, heart
- Pain, Skin irritation
- Bite
- Acute injury or inflammation
- Plastic or Cement implants
- Pain

Electrical Stimulation (20 Risk factors)
- DVT or Thrombosis
- Hemorrhagic conditions
- Pregnancy
- Eyes, anterior neck, carotid sinus, head, reproductive organs
- Impaired Cognition or communication
- Regenerating Nerves
- Cardiac failure (local)
- Damaged or at risk skin (local)
- Infection
- Tuberculosis
- Malignancy (local)
- Recently irradiated tissue (local)
- Electronic Device (local)
- Impaired sensation (local)
- Active epiphysis
- Skin disease
- Impaired Circulation
- Chest, heart
- Pain, Skin irritation
- Bite
- Acute injury or inflammation
- Plastic or Cement implants
- Pain
Safety

Hot Pack (20 Risk Factors)
- DVT or Thrombosis
- Hemorrhagic conditions
- Pregnancy
- Impaired Cognition or communication
- Acute Injury or inflammation
- Impaired sensation (local)
- Eyes, anterior neck, carotid sinus
- Metal (staples/bullets)
- Scalp fractures
- Burn
- Bleeding and open wounds
- Cardiac failure (local)
- Damaged or at risk skin (local)
- Infection
- Tuberculosis
- Malignancy (local)
- Recently irradiated tissue (local)
- Active epiphysis
- Skin disease
- Impaired Circulation
- Blood Flow Restriction (21 Contraindications and Risk Factors)
- DVT or Thrombosis
- Impaired Circulation
- Physiological Vasodilatation of the extremity
- Infection
- Extremities with Dialysis Access
- Anoxia
- Native or Artificial Anomalies
- Taut or tight extensor to the tourniquet
- Medications and supplements known to increase clotting risks
- Open Fracture
- Increased intracranial pressure
- Open Soft Tissue Injuries
- Poor technologic or surgical reconstructions
- Severe crushing injuries
- Severe hypotension
- Elbow surgery (where there is concomitant excess swelling)
- Skin grafts (in which all bleeding points must be readily distinguishable)
- Secondary or delayed procedures after immobilization
- Muscular grafting
- Cancer
- Lymphedema
Safety

- Thrombus
- Cardiac Response
- Peripheral Vascular Changes
Safety (Thrombus)

Tourniquets in and of themselves used for a short duration do not seem to pose an increased thrombus risk (Noordin 2009)
Safety
(Thrombus)

- Acute bouts of tourniquet use have fibrinolytic potential (Holemans, 1963; Hozknecht et al., 1969; Robertson et al., 1972; Shaper et al., 1975; Stegnar & Pentek, 1993)
Resistance Exercise has also been shown to stimulate the fibrinolytic system (deJong et al., 2006)
Safety
(Central Cardiac Response)

- Based on the ACSM guidelines suggest loads of 75-85% of an individual's 1 RM are needed to induce a strength and hypertrophy response.
MacDougal et al have reported elevations in BP as high as 480/350 mmHg when exercising at 80-100% 1 RM and Heart Rate at 170 BPM.
Safety
(Central Cardiac Response)

- BFR at 20% 1 RM had BP at 182/105 mmHg and 109 BPM.

- Authors Concluded that these values are all below what was seen with traditional HIT training (Takano 2005).
Safety (Peripheral Vascular Changes)

“What we can say is that BFR training including resistance exercise and walking may nor worsen arterial compliance.” (Horiuchi 2011)
Safety
(Peripheral Vascular Changes)

© Use your judgment as you would with all other modalities and procedures in therapy—Ray Yumang 2018.
Safety

- There has been quite a bit of research exploring the safety of BFR
- Sound clinical judgment is key
Perspective
Rehab Use

- Acute Injury
- Post Surgery
- Strengthening Phase of therapy
Acute Injury

- Acute Sprain/Strain
- Ankle, Knees and Shoulders
- Growth Hormones and Collagen Synthesis
Acute Injury

- Hamstring Pull/Strain
- Down regulating Myostatin
- Helps Slowing down fibrosis
Acute Injury

- Researchers at John Hopkins found that lowering myostatin reversed muscle fibrosis (Bo 2012)
Post Surgery

- BFR without exercise did not cause hypertrophy but it significantly reduced atrophy to the control group (Takarada 2000)
Post Surgery

- Post ACL surgery
- Post Achilles tendon surgery

Goal is decrease the rate of atrophy
Post Surgery

- Cell Swelling
 - Using tourniquet without exercise

- Protocol
 - 5 min bouts for 5 x with a 3 min rest period
Post Surgery

As lactate builds up in the muscle, it inhibits the surrounding contraction of working muscle fibers and consequently additional motor units need to be recruited to maintain muscle force production. (Mortani 1992, Sundberg 1994, Miller 1996)
Strengthening Phase
Strengthening Phase

- Past the pain goal
- Strengthening training
- Increase in IGF-1 thus hypertrophy is increased
Strengthening Phase

- Good with rotator cuff strengthening
- Quad Strengthening
- Calf Strengthening
Strengthening Phase
Performance

- Strength training
- Endurance training (VO2 max)
Performance

- **Stability Training**
 - **Stabilizers**
 - Rotator cuff, Hip external rotators, Hip abductors
 - **Antagonist**
 - Posterior muscles (hip extensors, hamstring, posterior deltoids)
 - **Agonist**
 - Power muscles (Hip flexors, quads, calf, pecs)
Performance
(Strength training)

Competitive Edge
Performance (Strength Training)
Performance (Endurance Training)

- Walking
- Cycling
Performance
(Endurance Training)

- Walking

- Study reported increase in VO2 Max after 6 days a week (2 weeks) of 2x a day walking. (Park 2010)

- The authors concluded that BFR walk training might be used as a low intensity alternative for athletes to maintain or improve endurance.
Performance
(Endurance training)
Performance
(Endurance training)

- Cycling
- At the conclusion of training and studies thigh and quadriceps muscle volumes increased by 3.8 and 5.1% with BFR training group (Abe 2010)
Performance
(Endurance training)
Who is using it?
(Name Drop)

- NFL
- NBA
- MLB
- MLS
- Major Colleges
- A. Yumang Rehab Services..
Conclusion

- Modality/Procedure
- Analysis
- When
- Why
- Purpose
Tools
Graston Technique
Questions?
"In Pursuit of helping People, be willing to change" - Ray Yumang, PT
THE M345UR3 OF 1N73LL163NC3 15 7H3 481LL17Y 70 CH4NG3.
Thank you

-Ray Yumang, PT